Selwyn Magazine Summer 2024

Welcome

The dawn of the modern newspaper
David Thomson
4

Backing British content
Tim Davey
6

Research in action
The AI PC era begins
Sophie Wilson
8

Shooting stars
Dr Mathias Nowak
12

Unearthing the riches of the volcano
Dr Carrie Soderman
14

Eastern lights
17

SCBC
18

Teaching excellence
Interacting with young minds
20

Graduation 2024
24

Development news
26

Master’s diary
28

Getting in touch with Selwyn

Selwyn College Development & Alumni Office
The Old Library, Selwyn College
Grange Road, Cambridge CB3 9DQ
T: +44 (0)1223 768534
E: alumni-office@sel.cam.ac.uk
W: www.sel.cam.ac.uk/alumni-and-friends

Development Director
Mike Nicholson (mnic@cam.ac.uk)

Major Gifts and Legacies Manager
Sam Davey (sda@cam.ac.uk)

Development Officer
(untl April) Susannah Clarke
(from July) Asia Moore-Picking
(am@cam.ac.uk)

Database Co-ordinator
Christina McMillan (cmcm@cam.ac.uk)

Alumni & Events
(untl June) Shona Winnard
(from July) Gloria Morey-Picking

Publications & Marketing Officer
Thrush Ranawaka (tr491@cam.ac.uk)

Cover photo by Shanna Hart.

Registered Charity No. 1137517

magazine@sel.cam.ac.uk
www.sel.cam.ac.uk

The publication contains paper manufactured by Chalmers Gable’s Certified Sustainable Wood program. Additional information about this program and its benefits can be found at certifiedwood.org.

This edition is available online at www.sel.cam.ac.uk/alumni-and-friends.

Receive the latest news and updates about our alumni
Community.

Get in touch with Selwyn

We’re sorry to report that YoYo, the master’s dog and a resident of the college for more than a decade, died in June – a couple of months short of her 12th birthday. YoYo was famous as Selwyn’s college cat, a title which she owed to former council secretary Dr Rupert Thompson. He noted ahead of her arrival that cats rather than dogs were the normal adornment to a master’s lodge, so he recorded in the minutes that council had given the master permission to keep “a very large cat”. The story was subsequently picked up by The Times, the BBC, Sky News – and international news outlets from Globo in Brazil to the Xinhua news agency in China.

Since her arrival in January 2014, YoYo became a firm favourite with generations of students. She managed to get into the room and beg for treats at 80 freshers’ suppers; she took part in JCR welfare walks to Grantchester; and she was a fixture at alumni events and Easter egg hunts, as well as showing of some of the photographs taken around the college, and we’re appreciative of all the contributions that are published online throughout the year and in print here.

Selwyn is lucky to have among its alumni two of the biggest figures in world media: David Thomson who chairs the Thomson Reuters organisation, and Tim Davey who has served since 2020 as Director-General of the BBC. They both write exclusively for us, with David focusing on how his early years were shaped by his family with its ground-breaking newspapers and Tim setting out the case for the BBC in a fragmenting world. They are supplemented by a robust defence of the values of journalism by Paul Bascobert, the President of Reuters News.

Of course, none of this explosion of media would have been possible without the pace of change in technology. Again, we have a report from the frontline. Alumna and honorary fellow Sophie Wilson is one of the most distinguished computer scientists of our age, and she has written specially for this magazine about the question we probably all have: what on earth is coming next?

We have supplemented Sophie’s fascinating piece with two examples of the research being done by college fellows at earlier stages of their careers. Carrie Soderman writes about earth minds and an exploration of media minds by Paul Bascobert, the President of Reuters News. We therefore ask for no condolences but rather a celebration of a magnificent basset hound who, as these photographs show, brought pleasure to so many people.

That ties in neatly with our cover picture for this edition. It shows the night that the Aurora Borealis came to Cambridge, providing an exceedingly rare light show across the city and much of the United Kingdom. The pleasure of this magazine is that we can give a proper showing of some of the photographs taken around the college, and we’re appreciative of all the contributions that are published online throughout the year and in print here.

Later in the magazine, you will find our regular feature on fellows and their work. This year we feature the vice-master, who is a distinguished lawyer, along with an engineer and a theologian. It’s a reminder that the academic work of the college, which is world-leading, is done by people from a multiplicity of different backgrounds. Novely is no longer particularly novel. Jörg Haustein discusses his background in East Germany, and he is our first fellow from there; just as we also recently installed our first fellows from Chile (maybe even the first ever from South America) and Syria. Our is a diverse community that offers a model of how we can work together for the benefit of the United Kingdom and the wider world.

If you enjoy what you read here, please also keep an eye on our website and our social media platforms where we feature daily stories about Selwyn College Cambridge and you will find our main outlets, including a wide range of videos on YouTube, with @selwyn1882 – our handle to look out for on Twitter/X – and Instagram. We’re in the media business...

Celebrating our college cat

Welcome
Journalism featured greatly in my life from earliest days. A single recollection stays lodged. My father left me in my grandaunt Selwyn’s Missions study as a very young boy. RHT read his newspaper intensely with bottle cap glasses drawing him within the smallest margins of the page. The radio broadcast news at a high decibel. I sat in silence, trying to imbibe his world.

Our family resided in London during the late 1960s, so my father became chairman of The Times. RHT had a room in our flat and joined us for breakfast several mornings a week. Newspapers, radio, discussion followed. We would visit with him in his home in Buckinghamshire on most weekends. My sister and I adored exploring nature but conversation usually gravitated to newspapers and journalism. I sensed the tension and began to understand the bifurcated world, internal and external.

My high school days in Toronto passed swiftly. RHT and I would often walk to City Hall to attend public sessions where democracy was on the agenda. It was in the midst of dictating his autobiography After I was Sixty (1976). The tale of encounters with Bhutto, Sadat, J. Paul Getty, Hammer and many other figures were redolent.

I could hardly believe the news of my acceptance, having struggled badly with the sciences and suffered poorly. Selwyn loomed large. I kept to myself, playing ice hockey for the university and taking time to pursue the art world alongside history studies. RHT lived on the Upper East Side, first in the family home of his first wife, Dr. Ian Muir. He kindly suggested that I apply and write the exams for history.

I would become closer to the businesses which I would become chairman of in early August. My father took the reins thereafter. My father had taken us to our Claymore oil field off Wick when RHT suffered a major stroke on June 21, 1976. He fought hard to recover but passed away in Hamilton, Michael Joseph, Sphere Books. I would hear him speak to the press room seeking to learn of the抄写ist’s thoughts that made that day and every day.

The dawn of the modern newspaper

The ‘glass must always remain half full.’

Let us re-affirm our commitment to journalism, journalism which espoused journalism.

course with Reuters, and The Globe and Mail. They so admired the Svenn and cherished the latter. I feel immensely proud to be alongside these famed news organizations. The present leadership is fuelled by passion and resolve to make a difference in our world. We stand upon the shoulders of Sir Harry and a host of brilliant journalists that shaped these legacies. The future has never looked brighter.

Selwyn College permitted time and space to observe, reflect and shape who I am. I am grateful. The memories rekindle warm moments.

Why I have faith in the future of journalism

Paul Cascirot, president of Reuters’ New, on how the Thomson vision thrives today.
In the UK, the hottest seat in broadcasting is director-general of the BBC. The corporation remains the strongest force in British media, with over 90% of the public consuming its content each week. It has hundreds of millions more in its worldwide audience. And yet it is always near the centre of controversy about its funding, its programmes and its politics. Tim Davie (SE 1986) sets out the case for the organisation he leads.

Tim Davie

Born: 25 April 1967
Education: Whigfield School, Croydon; Selwyn College (1986–1989)
1991 Joined Procter & Gamble as a trainee
1993 Marketing & Finance Dept, P&G Co
April 2005 Joined the BBC as Director of Marketing, Communications and Audiences
2008 Appointed Director of Audio & Music, BBC responsible for BBC’s national radio networks, BBC Orchestras and BBC Proms
2012 Acting Director-General of the BBC
2013 CEO of BBC Worldwide
2018 Appointed a Commander of the Order of the British Empire (CBE) for work in BBC Worldwide
2020 Appointed Director-General of the BBC

But in a competitive global market, the pressure on huge international businesses to deliver efficiency creates genuine jeopardy for UK-originated content and homegrown storytelling. It is worth reminding ourselves of exactly what is at stake. The UK’s creative industries are a growing £25 billion success story. They are built on a unique, globally-admired system of public and commercial investment that has proven itself over decades in delivering profits for both society and the UK balance sheet. They are much more than ‘soft’ power.

In the past few years, a new wave of technological change has rapidly reshaped our media landscape. It has brought with it huge benefits to consumers, with more choice than ever before, and exciting new opportunities in areas such as AI. It is amazing to think that during my time at Selwyn we had no mobile phones, no social media and only four TV channels!

But the new world brings fresh challenges too. The challenge to our democracy from disinformation and malign international influence is growing. Over 70% of the world does not even have a free press. And there is the challenge to our society from media fragmentation, polarisation and social division.

Earlier this year, I set out ‘A BBC for the Future’. It is a plan for how we intend to focus our mission and resources more closely on the needs of today’s society, and respond more directly to some of the shared challenges we now face. It prioritises three clear roles for the BBC in the years ahead. To pursue truth with no agenda, by reporting fearlessly and fairly. To tell the case for the organisation he leads. To make each of our nations and communities make each of our nations and communities

These are the stories that celebrate and showcase our world-leading culture and creativity. They document the differences that have become hung up on the abstract notion of global appeal. They are stories that celebrate and showcase our world-leading culture and creativity. They document the differences that have become hung up on the abstract notion of global appeal. They are the stories of the 21st century that has become hung up on the abstract notion of global appeal.

Today the BBC invests far more in original British content than anyone else. No one does more to champion new talent from every part of the UK. We contribute almost £5 billion to the UK economy each year, supporting over 50,000 jobs and working with 14,000 suppliers. Every £1 of our direct economic activity generates £2.63 in the economy as a whole. And 50% of our economic impact is outside London, compared to an industry average of 25%.

Together we need to champion institutions like the BBC and make sure that the UK’s remarkable creative success story continues. That is why we are doubling down on our commitment to back the best British storytelling in the years ahead. Not only for the benefit of our audiences, but to safeguard the strength of the UK’s creative sector as a whole.

Authentic British stories, brilliantly and beautifully told, are our unique point of difference in a saturated market that has become hung up on the abstract notion of global appeal.
I

last wrote for this magazine in autumn 2014, predicting that the future of computing lay in power-efficient microprocessors built on a single silicon die, all specialised for particular tasks. Over the past decade, all that has happened and more. Thanks to modern microprocessors, we now have accessible ‘AI chatbots’ on almost every website, with ‘AI image generation’ at your fingertips. What is next?

Firstly, hardware will continue to evolve. Machine learning is coming to your computers. Machine learning is one of the basic components of AI; in essence, it is a system that can learn and carry out tasks without human input. Indeed, it is already here – speech recognition is now done with machine learning algorithms, and so is unlocking your phone or computer with your fingerprint or face. You may not think of those things as being similar to ChatGPT, but they use similar algorithms to what ChatGPT uses and they are processed locally on processors on your device. In fact, if you bought a device or computer in the last four or five years, then you can run “proper” machine learning on it, which is usually more power efficient than sending all your data to a supercomputer in the cloud.

So where do supercomputers fit in with the future of AI? While modern computers are built out of a few silicon chips which contain one or more silicon dies with multiple processors on them, supercomputers are built out of lots of silicon chips. Furthermore, supercomputers purpose-built for machine learning tend to include many more high-performance processors on the chips, which are also highly specialised. For example, supercomputers have specialised processors called Neural Processing Units (NPU). NPUs are a relatively new type of processor that can compute similarly to our brains, which makes them useful for developing artificial intelligence. Over the last decade, there has been a dramatic race in NPU performance – a gain of 1000x for machine learning algorithms on a single chip – the same 1000x gain for Central Processing Units (CPU: the main processor in a computer) took three times longer. In fact, they have already trickled down to your devices: the machine learning algorithms for speech recognition and unlocking your phone are handled by versions of NPUs on your phone. So, there’s technically nothing that a supercomputer does that an ordinary computer, or your tablet or phone, can’t do – a supercomputer just does it a lot faster.

Measuring this sort of computer performance has always been tricky. With machine learning it’s even more tricky, as performance becomes more about how a processor on the chip called the General Purpose Graphics Processing Unit (GPoPU) can handle specific algorithms. We currently measure their performance scale in tera-operations per second (TOPS), with an operation defined as a simple task like a multiply or add.
microprocessor chips. Are etched into this wafer, which is then cut into slices of pure silicon. Integrated circuits are evolving at pace, moving beyond the sole control of the technical mega-corps. The software for machine learning is evolving, moving beyond the sole control of the technical mega-corps (in this case: Microsoft, Google, Amazon, Alibaba, Baidu). When OpenAI’s machine learning model (LLM) gets better at doing the tasks you want but is still quite error-prone. You begin to see something useful at 10 billion and 4 billion, but these need a moderately powerful PC to run. For 70 and 140 billion parameter models, you need a top-of-the-line machine with high-powered components. These are still accessible to a consumer, albeit at a steep cost. I’ve concentrated on LLMs here, but this applies to other uses of machine learning – image generation and image processing of all kinds (increase resolution, remove objects, corrections). And I have to add a warning: LLMs of even the largest size are still prone to hallucinations, and have all kinds of bias. But they’re very useful. For example, I’ve used open-source local LLMs for summarisation, both because I can’t send things to the cloud for security reasons or because it is easier to experiment with local models. On the other hand, I did try fairly hard to make a Christmas card with a robin sitting on a garden fork handle in a snowy garden on a locally running image generation model, but I couldn’t get the result I wanted... I think there’s now a new skill for humans of the future: working out a prompt for a machine learning programme. One last thought: there are a lot of people discussing ‘AI’ as a magical cure-all or ultimate threat. The dictionary definition of ‘intelligence’ is: ‘the ability to apply knowledge to manipulate one’s environment’ as one of its clauses. The machine learning we have today certainly doesn’t do that. At best AI is only 50% of that – it is definitely artificial. Any manipulation of the environment is left to the user.
Dr Mathias Nowak, Gavin Boyle Fellow in Exoplanetary Science, is an astrophotographer, capturing the stars from the college gardens. He let us into his process, telling the story of his night capturing the Whirlpool galaxy from the fellows’ garden.

26 April 2024

19:00 The clouds disperse, just as the Met Office forecasted. It promises to be a clear night, in the heart of spring ‘Galaxy season’. I’ll be setting up my telescope in the fellows’ garden.

21:10 The mount, carrying my 80mm refracting telescope with an old DSLR camera, is standing in the garden, roughly aligned to the north. A small guidescope with a guide camera are piggybacked on the main telescope, and a single-board computer with a battery complete the set up (pictured in the image to the left), along with the usual web of cables. The plan is to use the guide camera to take short exposures and send them to the computer. There, they will be analysed by software to detect any drift of the stars. The mount, properly aligned on the Earth’s rotation axis, should compensate the apparent motion of stars. But if there is any residual drift, the software will adjust the pointing to keep the image perfectly still on the DSLR, which will take long exposures.

Overall, it’s a standard rig for astrophotography, with one notable quirk: the mount I use, an EQ-5, is designed for visual use, not for photography. As such, the motors adjusting the pointing are controlled manually. The computer can’t talk to them, which is unacceptable for what I plan to do. So I added an electronic board, which I designed and built to serve as an interface between the two.

Now I need to fine tune the alignment on the North Pole, a tedious process consisting in measuring the drift of stars in the images, before making small adjustments to a couple of screws on the mount, and repeating as many times as required.

22:30 An hour and a half! That’s how long it took me to achieve what I can only describe as a half-decent alignment. I can manage exposures of between two to three minutes before before star trails become apparent. Not very good, but I am out of patience, so I’ll go with it. I suspect the ground was a bit wet, causing the mount to sink whilst I was making the adjustments, and messing with the measurements.

22:40 I’m looking at the sky to find a suitable target. My options are limited. The Faculty of Economics blocks the eastern horizon, and light pollution gradually takes over towards the south, washing out most stars in that direction. A massive tree obscures the south-west almost up to the zenith. So to the west, the Chapel is conspiring with a waning Moon to make observations impossible. I decide on M51, the Whirlpool galaxy. It’s high in the sky, so I should be able to track it for a while before it disappears behind the tree, and it’s not too faint for my 2-minute exposures. I used to have a picture of it on my wall — a famous image taken by the Hubble Space Telescope.

22:50 Finding the target in the sky was easy. It’s between the Big Dipper and the two stars of Canes Venatici. I am now controlling everything remotely from the fellows’ parlour. All I can do is add exposures and various calibrations, and wait. My telescope isn’t the Hubble, and the sky above the fellows’ garden isn’t really comparable to low-Earth orbit, but I’m curious to see what I can get! For now, I only see a smudge in the middle of the images...

27 April 2024

02:40 I’ve lost the target. It seems to be behind a tree. I add another set of calibration frames in the observing queue and return to the fellows’ garden to pack up.

In total, I have 88 two minute frames of M51, totalling about three hours of photography. However, I am unsure whether these are of any quality. Much like scientific observations, only through proper calibration and processing do the details reveal themselves. The main fight is against the pesky light pollution, which tends to leave an uneven background in the images. It is very difficult to remove, but here it is (pictured below): the Whirlpool galaxy, seen from the fellows’ garden.

Below: The Whirlpool galaxy seen from the fellows’ garden.
The movement of this magma can be detected as earthquakes, and sometimes parts of this mush are forced out of the top of the volcano as an eruption. However, not all the magma beneath a volcano erupts over its lifetime. Once this magma cools in the crust, we are left with the preserved chamber that once fed a volcano, with lots of crystallised minerals.

Some of these minerals contain ‘critical elements’, elements that are essential for modern technology with no easy substitution available, but whose supply is at risk of disruption. My research focuses on understanding the behaviour of these critical elements beneath volcanoes, and working out why some volcanic systems are rich in them, and others effectively barren.

I am most interested in a group of elements called ‘rare earth elements’ (REEs), such as neodymium and dysprosium. The REEs have the highest supply risk of all critical metals but are used for key components (particularly magnets) in wind turbines, fuel cells and motors, and have uses in robotics and computing. At present, most of the global REE supply comes from China.

My research combines modelling and chemical data from natural samples to understand what factors in the geological history of a magma chamber mean it is likely to contain certain minerals, and therefore host certain elements. For example, does it matter how much water there is, or the pressure and temperature under which the magma crystallises?

We’ve found that rocks formed underneath alkali-rich volcanoes seem to be rich in REEs, compared to most other volcanic rocks on Earth. Alkali-rich volcanoes are those which have more sodium and potassium relative to aluminium and silicon, which is what most volcanoes have an abundance of. Alkaline igneous rocks are often found in regions of continental break-up (rifting), such as the present-day East African Rift system, or the over 1 billion year-old Gardar rift in southwest Greenland where I will be doing fieldwork this summer to collect samples. These samples consist of rocks we collect at the surface and samples from the hearts of ancient volcanoes, brought to the surface for the first time through industry and research drill cores. We can slice these rocks into a 0.03mm cross-section and observe them using an optical microscope or an electron microscope – the latter can measure chemical composition within a single crystal. This can tell us about the minerals in each rock, and the elements they contain. Importantly, each unique mineral contains a different mixture of elements because certain mineral structures fit or ‘prefer’ certain sizes or charges of ions. For example, if an ion of a given element is too large to fit into the lattice of a mineral without causing significant strain in the structure, thanks to thermodynamics, that element will ‘prefer’ to stay in the magma rather than be hosted in the mineral.

We also use geochemical modelling to test hypotheses about the conditions under which the volcanic magma might be particularly rich in REEs versus conditions where most of the REEs are held firmly within mineral structures. Generally, we find that the less that REEs are absorbed by minerals that form early in the crystallisation of a magma chamber, the more likely it is that the concentrations of REEs in the magma left behind reach high enough levels to form an ore deposit that could be mined. By understanding how magma chambers become rich in REEs, we can figure out where to look for them, which will help diversify the range of industrially valuable REE sources available, improving global supply chain security.

Research in Action

Unearthing the riches of the volcano

Rare earth metals, mined from the remains of ancient volcanoes, are used to create components that make modern technology possible—but these resources are difficult to find, and therefore their supply is under threat. Solving this problem is Dr Carrie Soderman, whose research focuses on how we can better locate them.

When we think of volcanoes we often think of the explosive eruption of magma at the Earth’s surface. However, beneath every volcano lies a hidden chamber: a mushy pile of magma and newly formed minerals crystallising.

Demand for REEs is predicted to grow rapidly over the coming decades, driven mostly by growth in electric vehicle and wind turbine production, but faces a shortfall in supply of about 30% by 2035. Our research also supports a wider understanding of these volcanic systems that can have huge social impacts on local communities, such as in Malawi, where groundwaters near the alkaline volcanic rocks contain such high levels of fluoride that they are causing health problems, but the exact source of the fluoride from the rocks is unknown making it hard to mitigate risks. For geoscientists, it is clear furthering our knowledge of these REE-rich alkaline igneous rocks is vital for securing the supply of our resources and protecting the health of communities living near these geological features.
Neodymium
This is used to make powerful magnets used in loudspeakers and computer hard drives to enable them to be smaller and more efficient. Magnets containing neodymium are also used in green technologies such as the manufacture of wind turbines and hybrid cars.

Dysprosium
This is mainly used as an alloy for neodymium-based magnets. This is because it is resistant to demagnetisation at high temperatures, an important property for magnets in motors and generators in wind turbines and electric vehicles.

Lanthanum
This element is used in camera and telescope lenses. Compounds containing lanthanum are used extensively in carbon lighting applications, such as studio lighting and cinema projection.

Cerium
Used in catalytic converters in cars, enabling them to run at high temperatures and playing a crucial role in the chemical reactions in the converter. Lanthanum and cerium are also used in the process of refining crude oil.

Praseodymium
Used to create strong metals for use in aircraft engines. Praseodymium is also a component of a special sort of glass, used to make visors to protect welders and glassmakers.

Gadolinium
Used in X-ray and MRI scanning systems, and also in television screens. Research is also being done into its possible use in developing more efficient refrigeration systems.

Yttrium
Important in making televisions and computer screens and other devices that have visual displays as they are used in making materials that give off different colours. Europium is also used in making control rods in nuclear reactors.
SCBC

Cambridge wouldn’t be Cambridge without rowing, and here at Selwyn our Boat Club was founded at the same time as the college itself in 1882. After some choppy waters in recent years, our rowers are back to fine form – and the club captain Joel Kendall (SE 2020) takes us through the year’s highlights.

Off the back of an excellent 2023 May bumps campaign, it’s a pleasure to report that SCBC continued to grow in 2024. Overall, the five crews went up 10 places, getting bumped just once, which is one of the best results to date.

SCBC Cambridge wouldn’t be Cambridge without rowing, and here at Selwyn our Boat Club was founded at the same time as the college itself in 1882. After some choppy waters in recent years, our rowers are back to fine form – and the club captain Joel Kendall (SE 2020) takes us through the year’s highlights.

Left: The 2023/24 academic year got off to a great start with a win for the Women’s 1st Novice boat at Fairbairns as the fastest Women’s Novice crew with successful results also for our senior and alumni crews.

Above: The Women’s 1st IV in action

The men’s 1st VIII travelled to London to compete in the Head of the River Race. After a successful term, we were looking forward to see how they would match up against the rest of the country. They overtook a good few crews before Hammersmith, finishing in a time of 18:40, gaining over 80 places.

Continuing Selwyn’s great form, the Men’s 1st and 2nd VIII’s both earned four blades bumping Churchill I, Christ’s I, Lady Margaret II and Churchill II, St. Catherine’s II, Lady Margaret III and Clare Hall I respectively. The Women’s 1st VIII also took great credit having narrowly missed out on a bump on a fast Homerton crew. The club gained 10 places making this one of the most successful campaigns to date.

May Bumps 2024

“Off the back of an excellent 2023 May bumps campaign, it’s a pleasure to report that SCBC continued to grow in 2024. Overall, the five crews went up 10 places, getting bumped just once, which is one of the best results to date.”

Left: The 2023/24 academic year got off to a great start with a win for the Women’s 1st Novice boat at Fairbairns as the fastest Women’s Novice crew with successful results also for our senior and alumni crews.

Above: The Women’s 1st IV in action

The men’s 1st VIII travelled to London to compete in the Head of the River Race. After a successful term, we were looking forward to see how they would match up against the rest of the country. They overtook a good few crews before Hammersmith, finishing in a time of 18:40, gaining over 80 places.

Continuing Selwyn’s great form, the Men’s 1st and 2nd VIII’s both earned four blades bumping Churchill I, Christ’s I, Lady Margaret II and Churchill II, St. Catherine’s II, Lady Margaret III and Clare Hall I respectively. The Women’s 1st VIII also took great credit having narrowly missed out on a bump on a fast Homerton crew. The club gained 10 places making this one of the most successful campaigns to date.

May Bumps 2024

The men’s 1st VIII travelled to London to compete in the Head of the River Race. After a successful term, we were looking forward to see how they would match up against the rest of the country. They overtook a good few crews before Hammersmith, finishing in a time of 18:40, gaining over 80 places.

Continuing Selwyn’s great form, the Men’s 1st and 2nd VIII’s both earned four blades bumping Churchill I, Christ’s I, Lady Margaret II and Churchill II, St. Catherine’s II, Lady Margaret III and Clare Hall I respectively. The Women’s 1st VIII also took great credit having narrowly missed out on a bump on a fast Homerton crew. The club gained 10 places making this one of the most successful campaigns to date.

May Bumps 2024

The men’s 1st VIII travelled to London to compete in the Head of the River Race. After a successful term, we were looking forward to see how they would match up against the rest of the country. They overtook a good few crews before Hammersmith, finishing in a time of 18:40, gaining over 80 places.

Continuing Selwyn’s great form, the Men’s 1st and 2nd VIII’s both earned four blades bumping Churchill I, Christ’s I, Lady Margaret II and Churchill II, St. Catherine’s II, Lady Margaret III and Clare Hall I respectively. The Women’s 1st VIII also took great credit having narrowly missed out on a bump on a fast Homerton crew. The club gained 10 places making this one of the most successful campaigns to date.
Drama on ITV called Crown Court.

Two things influenced me. I used to love detective stories, also solving lateral thinking puzzles. So I made my decision at a very young age and, somewhat unusually, never wavered from it.

Your academic career in law wasn’t so straightforward, though. How did you become an academic?

As an undergraduate I did very well academically, and in the Big Bang era City law firms were very proactive in recruitment. In 1980 I joined Slaughter and May: it is an outstanding law firm and I learned a huge amount about how the law operates in a transactional context, but life in the City was just not for me and I missed academic law.

I applied for a college teaching position at Selwyn almost exactly 30 years ago, where I was interviewed by a daunting but welcoming panel, including Sir David Harrison, Michael Tilly and John Spencer. To my great pleasure, I was offered the job, went on to gain a university lectureship in the Law Faculty two years later, and have been here ever since. I took my PhD in 2005 by an unusual route too – by virtue of published work, particularly relating to the university’s Special Regulations.

And last year you became a Professor. What’s keeping you busy these days? I’m very interested in the intersection between the law of contract and the law of tort, both of which are core subjects that all undergraduates have to study, and which I thoroughly enjoy lecturing. I publish research in these fields, and am proud that my textbook on the Law of Contract is in its 46th edition. Teaching students, however, is really where my heart is. I love interacting with young minds, helping them blossom and ward off imposter syndrome: I think it helps them to know that I struggled with it as a student – and to this day, really!

You’re passionate about how the law affects people too. What other researchers know about your current projects?

Last year, I gave a public lecture on the common law’s inadequate response to gambling addiction and suicide, the relevant precedent is out of date, as it pre-dates both the Gambling Act and the arrival of internet and mobile gambling. Much of my time at the moment is taken up with the forthcoming mastership election, which I shall as Vice Master, but I recently gave a lecture to the Commercial Court and am organising a symposium on an important milestone in the law of contract in the autumn.

Music is another important aspect of your life. What do you do in your free time?

When I was a student at Corpus, I was a choral exhibitioner – one day I’ll find the time to rejoin a really good chamber choir. Meanwhile, I’m proud that in 2020 I set up Selwyn Voices, a choir open to the whole Selwyn community, which performs a concert once a term. Students, fellows and staff are on a wholly equal footing, and it is such a fabulous sense of well-being. Outside college, I love the company of my three wonderful children. My eldest has just submitted his PhD at Cambridge, my youngest has just finished her finals at Oxford, and in between is my very special daughter Amy who has transition syndrome. As a family we love attending musicals and plays at the theatre, cooking and relaxing together (baking have become popular, since the pandemic!)

As you celebrate 30 years at Selwyn, what’s your favourite thing about the college?

Selwyn manages to be academically outstanding, but also friendly, welcoming and truly collegiate, a fellowship without cliques or divisions. So after 30 years, it’s still an extraordinary place to work.

As you celebrate 30 years at Selwyn, what’s your favourite thing about the college?

Selwyn manages to be academically outstanding, but also friendly, welcoming and truly collegiate, a fellowship without cliques or divisions. So after 30 years, it’s still an extraordinary place to work.

You were the first in your family to go to university. Tell us a few other headline stories about your early life. I was born in Romford, Essex, the eldest of three daughters, in a very loving family. I attended state school and then went on to study law at Corpus Christi College, Cambridge. My sisters and I were very academic, which surprised my parents – my father left school at 15, my mother at 16!

You grew up in Hull, in an area that in the 1970s still showed the scars of bombing from the Second World War. As a youngster, my main ambitions were to either play football like John Robertson (Nottingham Forest) or to draw for the Beano. I went to Robin Hood Senior School and like many kids who enjoy art but are also good at maths and physics, I was encouraged to specialise in the more technical subjects. My combination of Maths, Physics and Technical Drawing at A-Level led me to Mechanical Engineering by a combination of Maths, Physics and Technical Drawing at A-Level led me to Mechanical Engineering.

You hail from the North, but you called the Midlands home for a long time. Where did your interest in design and engineering start?

I grew up in Hull, in an area that in the 1970s still showed the scars of bombing from the Second World War. As a youngster, my main ambitions were to either play football like John Robertson (Nottingham Forest) or to draw for the Beano. I went to Robin Hood Senior School and like many kids who enjoy art but are also good at maths and physics, I was encouraged to specialise in the more technical subjects. My combination of Maths, Physics and Technical Drawing at A-Level led me to Mechanical Engineering.

You were the first in your family to go to university. Tell us a few other headline stories about your early life.

I was born in Romford, Essex, the eldest of three daughters, in a very loving family. I attended state school and then went on to study law at Corpus Christi College, Cambridge. My sisters and I were very academic, which surprised my parents – my father left school at 15, my mother at 16!

You were the first in your family to go to university. Tell us a few other headline stories about your early life.

You grew up in Hull, in an area that in the 1970s still showed the scars of bombing from the Second World War. As a youngster, my main ambitions were to either play football like John Robertson (Nottingham Forest) or to draw for the Beano. I went to Robin Hood Senior School and like many kids who enjoy art but are also good at maths and physics, I was encouraged to specialise in the more technical subjects. My combination of Maths, Physics and Technical Drawing at A-Level led me to Mechanical Engineering.

You grew up in Hull, in an area that in the 1970s still showed the scars of bombing from the Second World War. As a youngster, my main ambitions were to either play football like John Robertson (Nottingham Forest) or to draw for the Beano. I went to Robin Hood Senior School and like many kids who enjoy art but are also good at maths and physics, I was encouraged to specialise in the more technical subjects. My combination of Maths, Physics and Technical Drawing at A-Level led me to Mechanical Engineering.

As you celebrate 30 years at Selwyn, what’s your favourite thing about the college?

Selwyn manages to be academically outstanding, but also friendly, welcoming and truly collegiate, a fellowship without cliques or divisions. So after 30 years, it’s still an extraordinary place to work.

As you celebrate 30 years at Selwyn, what’s your favourite thing about the college?

Selwyn manages to be academically outstanding, but also friendly, welcoming and truly collegiate, a fellowship without cliques or divisions. So after 30 years, it’s still an extraordinary place to work.

You were the first in your family to go to university. Tell us a few other headline stories about your early life.

I was born in Romford, Essex, the eldest of three daughters, in a very loving family. I attended state school and then went on to study law at Corpus Christi College, Cambridge. My sisters and I were very academic, which surprised my parents – my father left school at 15, my mother at 16!

You grew up in Hull, in an area that in the 1970s still showed the scars of bombing from the Second World War. As a youngster, my main ambitions were to either play football like John Robertson (Nottingham Forest) or to draw for the Beano. I went to Robin Hood Senior School and like many kids who enjoy art but are also good at maths and physics, I was encouraged to specialise in the more technical subjects. My combination of Maths, Physics and Technical Drawing at A-Level led me to Mechanical Engineering.

You grew up in Hull, in an area that in the 1970s still showed the scars of bombing from the Second World War. As a youngster, my main ambitions were to either play football like John Robertson (Nottingham Forest) or to draw for the Beano. I went to Robin Hood Senior School and like many kids who enjoy art but are also good at maths and physics, I was encouraged to specialise in the more technical subjects. My combination of Maths, Physics and Technical Drawing at A-Level led me to Mechanical Engineering.

As you celebrate 30 years at Selwyn, what’s your favourite thing about the college?

Selwyn manages to be academically outstanding, but also friendly, welcoming and truly collegiate, a fellowship without cliques or divisions. So after 30 years, it’s still an extraordinary place to work.

As you celebrate 30 years at Selwyn, what’s your favourite thing about the college?

Selwyn manages to be academically outstanding, but also friendly, welcoming and truly collegiate, a fellowship without cliques or divisions. So after 30 years, it’s still an extraordinary place to work.
in a ceremony in LA in 2000, specifically for mechanical engineering on a new range of fixed focal length (prime) lenses, excitingly called the Cooke S4 lenses. The firm had not developed new lenses like these for over 30 years and we had to learn from scratch how to do it. The lenses had lots of novel mechanical features to make the life of the cinematographer easier. They also had extraordinary optical performance, working at a very wide aperture. They launched to the market in 1995 and have been used to make hundreds of films since then.

So with a career established in Hollywood and engineering, how did you enter academia?

After 10 years in industry, I fancied a change! I saw a research job at the Royal College of Art to help small companies design better products. It had my name on it. It also allowed me to study for my PhD (Churchill). I was very fortunate that completing my PhD and ending my research contract coincided with a vacancy to teach design.

And today, you work primarily in teaching. Did you always want to enter teaching?

I became a Lecturer in 2005 and joined Selwyn in 2006 after being courted by Ken Wallace. I had other options, but Selwyn was the only serious contender! Over the last (nearly) 20 years I have been lucky to supervise a lot of fabulous PhD students, with topics as varied as: measuring the economic impact of design, sustainable packaging design and more recently the dimensional precision of 3D printing. Designers face new challenges to adapt to a world where we need to consume and produce less. My real passion has been developing how we teach design to our manufacturing engineering students and the highlight of every year is a public design show where we are proud to showcase their work.

Outside academia, how do you spend your time?

Outside of my work, I am a carer for a fabulous youngster with additional needs. I would ideally spend more time gardening and maybe even doing a bit of painting now and then, but work and caring tends to dominate. I also like to watch Notting Hill Forest whenever I can.

What led you to study religions in Africa?

After my exchange student year, I applied for a year of international Christian students in Leipzig, most of whom were Ethiopian. I became fascinated with their culture, food and history and even started learning Amharic. After reading Education and Theology in Leipzig University, I was offered a PhD position in global Christianity at the University of Heidelberg. Remembering my Ethiopian friends from years before, I knew exactly what I wanted to research. I wrote the first history of Pentecostal Christianity in Ethiopia, a young and increasingly important religious movement in this traditionally Orthodox and Muslim country. Having visited a lot of postcolonial theory, I then wanted to interrogate German colonial history, which led me to my post doc, project on Islam in German East Africa. Luckily, my double expertise in African Christianity and Islam was exactly what SOAS was looking for when in 2011 they advertised a lectureship in religion in Africa. Teaching SOAS’ very diverse student body in the vibrant London atmosphere was a great joy, but the institution also bore the significant strains of the UK higher education system. I gladly opted for the calmer waters of Cambridge when the opportunity arose.

How does your academic past influence your approach to teaching?

As a citizen of Leipzig, I saw the demonstrations first hand that brought down the government. It was very moving and liberating to be part of a crowd of 300,000 marching around the centre ring road, right by the local Stasi headquarters! When the wall came down, and you travelled abroad. What sparked your interest in theology?

As a citizen of Leipzig, I saw the demonstrations first hand that brought down the government. It was very moving and liberating to be part of a crowd of 300,000 marching around the centre ring road, right by the local Stasi headquarters! When the wall came down, and you travelled abroad. What sparked your interest in theology?

As a citizen of Leipzig, I saw the demonstrations first hand that brought down the government. It was very moving and liberating to be part of a crowd of 300,000 marching around the centre ring road, right by the local Stasi headquarters! When the wall came down, and you travelled abroad. What sparked your interest in theology?

As a citizen of Leipzig, I saw the demonstrations first hand that brought down the government. It was very moving and liberating to be part of a crowd of 300,000 marching around the centre ring road, right by the local Stasi headquarters! When the wall came down, and you travelled abroad. What sparked your interest in theology?

As a citizen of Leipzig, I saw the demonstrations first hand that brought down the government. It was very moving and liberating to be part of a crowd of 300,000 marching around the centre ring road, right by the local Stasi headquarters! When the wall came down, and you travelled abroad. What sparked your interest in theology?

As a citizen of Leipzig, I saw the demonstrations first hand that brought down the government. It was very moving and liberating to be part of a crowd of 300,000 marching around the centre ring road, right by the local Stasi headquarters! When the wall came down, and you travelled abroad. What sparked your interest in theology?

As a citizen of Leipzig, I saw the demonstrations first hand that brought down the government. It was very moving and liberating to be part of a crowd of 300,000 marching around the centre ring road, right by the local Stasi headquarters! When the wall came down, and you travelled abroad. What sparked your interest in theology?

As a citizen of Leipzig, I saw the demonstrations first hand that brought down the government. It was very moving and liberating to be part of a crowd of 300,000 marching around the centre ring road, right by the local Stasi headquarters! When the wall came down, and you travelled abroad. What sparked your interest in theology?

As a citizen of Leipzig, I saw the demonstrations first hand that brought down the government. It was very moving and liberating to be part of a crowd of 300,000 marching around the centre ring road, right by the local Stasi headquarters! When the wall came down, and you travelled abroad. What sparked your interest in theology?

As a citizen of Leipzig, I saw the demonstrations first hand that brought down the government. It was very moving and liberating to be part of a crowd of 300,000 marching around the centre ring road, right by the local Stasi headquarters! When the wall came down, and you travelled abroad. What sparked your interest in theology?

As a citizen of Leipzig, I saw the demonstrations first hand that brought down the government. It was very moving and liberating to be part of a crowd of 300,000 marching around the centre ring road, right by the local Stasi headquarters! When the wall came down, and you travelled abroad. What sparked your interest in theology?

As a citizen of Leipzig, I saw the demonstrations first hand that brought down the government. It was very moving and liberating to be part of a crowd of 300,000 marching around the centre ring road, right by the local Stasi headquarters! When the wall came down, and you travelled abroad. What sparked your interest in theology?

As a citizen of Leipzig, I saw the demonstrations first hand that brought down the government. It was very moving and liberating to be part of a crowd of 300,000 marching around the centre ring road, right by the local Stasi headquarters! When the wall came down, and you travelled abroad. What sparked your interest in theology?
The faces change but the ceremonies remain the same. These are some of the images from General Admission 2024, as our students gathered in Old Court for their photograph – watched by families and friends. Then it was off to the Senate House to become our newest graduates, and to know that everyone in the college is hugely proud of their achievements.

Photos by Howard Beaumont and Thisath Ranawaka.
Development News

Over the past year, the college has seen an incredible level of generosity from alumni and friends which we know will have a transformative impact on our students’ experiences.

A milestone for Selwyn

We’re now able to share the news that the college has received notice of a £1.2m legacy from the estate of the late Richard Harvey (SE 1962) who passed away at the end of 2022. This will be one of the most generous bequests Selwyn has received and we look forward to sharing more news about the ways in which Richard’s generosity will make a difference.

Celebrating Sir David Harrison

Thanks to the generosity of Selwyn alumni and friends, £927,000 has been raised so far for the Sir David Harrison Fund to support science, engineering and maths. This means that our initial goal of raising £1m is now within reach! If you can help us reach our target, details of the fund and how to donate can be found here: www.sel.cam.ac.uk/alumni/sir-david-harrison-fund

Telephone Campaign

In the distant days before Christmas, thirteen of our students, ranging from first-years to finalists and PhD students enjoyed two weeks of calling and chatting to over 600 Selwyn alumni. More than £130,000 was raised for a variety of projects, including the Harrison Fund and to provide much-needed support for our students. Our thanks to all those who were able to help.

Academic grants & funds

Thanks to the generosity of two relatively recent alumni, David Cockayne (SE 2000) and Malcolm Coffin (SE 1999), we’ve been able to establish the Cockayne Fund for Geography and the Malcolm Coffin Fund for HIPS. Both funds will provide much-needed small grants for students for a wide range of projects within these subjects, such as help with dissertation costs, academic-related travel, intern experience – or book and resource purchases. Small grants such as these can make a disproportionate difference to students. Most subjects would benefit from the provision of such grants which can cost just a few thousand pounds per year.

Richard Harvey with his wife, Gill.
October

We begin the freshers’ suppers, now in their 11th year — and a feature for every incoming group of first-years, even at the height of the pandemic. In 2020 we moved from the Master’s Lodge to the Hall, but they still got their food. The menus started by being themed as Mexican, Italian and Indian in rotation, but enthusiasm for Mexican seemed to wane. There’s a finite amount of chili con carne that a master and his students can eat. But what cuisine could replace it? Our brilliant head chef Zsolt and his deputy Ferenc are Hungarian so — guess what — they suggested we introduce Hungarian night.

It has been a big success. There has been a certain amount of adaptation: goulash is really a soup, but we serve it here as more of a beef stew. However, the chicken paprikash has gone down a storm along with authentic noodles. Best of all is dessert: an apple strudel, which I think Hungary is allowed to claim as part of the former Austro-Hungarian empire. Zsolt and Ferenc each make them somewhat differently — I can tell who’s cooking on which night — but the strudels score 10/10 with the freshers each time.

December

Christmas Day and another recent Selwyn tradition: drinks in the Lodge for students and academics who are in Cambridge over the holidays, along with some of my family and friends. We never have fewer than a dozen people turn up, and often around 20; and it always seems special being together on Christmas morning. In the first couple of these events in 2013 and 2014 we were joined by a PhD student called Milan. He was from Bosnia Herzegovina, and he brought the gift of a book about his home country. Later, meeting some of his family at graduation I learned more about his story — which, when he was a child, entailed grabbing some possessions and fleeing from their home because, as Bosnian Serbs, they feared they would be killed by government soldiers. It was a reminder that horrifying events in modern Europe, with atrocities by all sides in the Balkans, predate the current crisis in Ukraine.

Milan started work in the UK when he finished his degree, and a couple of years ago he became a British citizen. In the recent election, he was a voter in the UK for the first time. Milan’s story is an example of how Cambridge changes lives, and makes this country better.

February

Cambridge United Football Club offered free tickets to Selwyn students for one of their home matches, as part of their attempts to build stronger links between the club and the university. A total of 25 people took up the offer, some of them going to a professional football match for the first time. I discovered that the tickets were for the standing area of the ground, so I’ll confess that I managed to arrange a seat in the stands for me and my fellowship colleague Daniel Beauregard because I am at a stage in life when the romance of the terraces has lost its allure. It was, in truth, not a great game. United lost to relegation rivals Cheltenham Town. But they’re a lovely club, and as a result of our contact with them the college is now entering into a partnership with their charitable arm the Cambridge United Foundation — which will provide volunteering opportunities for students and a way of bringing town and gown closer together. The lack of connection between the university and the rest of the city is troubling, so our aim is that we and other colleges can start putting things right.

June

The sadness of losing YoYo was softened by knowing how much she was loved in the college community. She was rehomed from a basset pack in Hertfordshire, and she swapped sleeping outside in a wooden-floored pen with 20 other dogs for sofas and cushions (which she came to see as essential) at Selwyn. When our alumnus Hugh Laurie met YoYo a few years back he said to her “well, you landed on your feet when you came here.” He was right. But I was very lucky to have her too.

Roger Mosey